Welcome to the Webinar!

We hope you are logged in properly, if you are having trouble call 949-824-5828

We have your audio muted, so we cannot hear you

 We can read your comments under the "chat tab" (conversation)

If you have a question for the panel, instead of using the "raising your hand" button, use the chat tab and preface your comment with "Question for Panel"

We will take questions during the Q&A session

Inter-University Energy and Safety Coalition

Marc Gomez, CIH, CSP, ARM, Interim Assistant Vice Chancellor, Facilities Management / Environmental Health & Safety Lisa Mahar, Senior Manager, Occupational Health and Safety, EH&S Matt Gudorf, LEED-AP, Campus Energy Manager, Facilities Management

UNIVERSITY of CALIFORNIA - IRVINE

- Introductions Getting to know one another
- Review of Existing Codes Governing Laboratory Ventilation
 - Challenges to Energy Conservation/Sustainability
- UCI Low-Flow (High Performance) Fume Hood Permanent Variance Application
 - Overview of Studies and Variance Application Process
 - Next Steps Variance Hearing, Purchase and Installation Plan, Expansion of Permanent Variance within UCI and other UC Campuses
 - UCOP "Center of Excellence" for Energy Conservation and Sustainability
 - Discussion

University of California, Irvine

Large research university \$16M annual utilities budget Lab buildings consume 2/3 of campus energy Many energy initiatives to reduce carbon footprint

Campus Energy \$avings Team Synergy

Safety ____ Management

- Engineers

Supportive -Users/ Researchers

Visionary & Supportive Upper Management

Patience

Facility Managers

Balancing Lab Safety & Climate Safety

- Create lab buildings that out perform ASHRAE 90.1 / CA Title 24 by 50%
- Combine energy initiatives such as
 Centralized demand controlled ventilation (CDCV)
 Low flow (high performance) fume hoods
 Reduced building exhaust stack airspeeds
 Energy-efficient lighting

- Introductions Getting to know one another
- Review of Existing Codes Governing Laboratory Ventilation
 - Challenges to Energy Conservation/Sustainability
- UCI Low-Flow (High Performance) Fume Hood Permanent Variance Application
 - Overview of Studies and Variance Application Process
 - Next Steps Variance Hearing, Purchase and Installation Plan, Expansion of Permanent Variance within UCI and other UC Campuses
- UCI "Smart Lab" Concept
- Discussion

- Introductions Getting to know one another
- Review of Existing Codes Governing Laboratory Ventilation
 - Challenges to Energy Conservation/Sustainability
- UCI Low-Flow (High Performance) Fume Hood Permanent Variance Application
 - Overview of Studies and Variance Application Process
 - Next Steps Variance Hearing, Purchase and Installation Plan, Expansion of Permanent Variance within UCI and other UC Campuses
- UCI "Smart Lab" Concept
- Discussion

CA Ventilation Code Requirements:

Code in Effect	Ventilation Requirements	Comments
California Building Code 2001	B Labs: 6 ACH H-8 Labs: 1 cfm/sf 12 ft ceiling = 5 ACH 10 ft ceiling = 6 ACH 8 ft ceiling = 7.5 ACH	 In effect through December, 2007 Existing Construction
California Mechanical Code 2007	B "Research" Labs: 0.43cfm/sf 12 ft ceiling = 3.5 ACH 10 ft ceiling = 4.2 ACH 8 ft ceiling = 5.25 ACH B"Science Classroom"/L (H-8): 1 cfm/sf	 Effective 1/2008 Refers to ASHRAE 62.1-2004 New Construction No category for <university <li="" research="">labs</university>

*Need "Alternative Means of Protection" from CA State Fire Marshal for less than minimum required ventilation

- Introductions Getting to know one another
- Review of Existing Codes Governing Laboratory Ventilation
 - Challenges to Energy Conservation/Sustainability
- UCI Low-Flow (High Performance) Fume Hood Permanent Variance Application
 - Overview of Studies and Variance Application Process
 - Next Steps Variance Hearing, Purchase and Installation Plan, Expansion of Permanent Variance within UCI and other UC Campuses
- UCI "Smart Lab" Concept
- Discussion

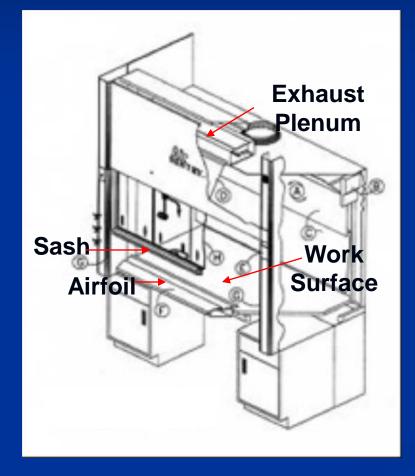
Challenges to Energy Conservation and Sustainability

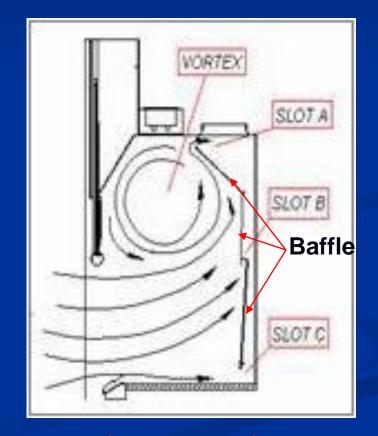
- The inability to reduce fume hood face velocity below 100 fpm (Cal-OSHA)
- CBC/CMC Laboratory Ventilation Requirements
- ANSI Z9.5 requirement minimum fume hood flow
- Others?

Question: Is Increased ACH Safer?

"Specification of Airflow Rates in" Laboratories" by Tom Smith, Exposure Control Technologies, Conclusions: ■ ACH as a metric for dilution is "too simplistic". Must consider other factors that lead to exposure, (i.e. contaminant generation rate, air mixing, etc.) "Increased airflow [may increase] contaminant generation and distribution throughout the space" ■ May lead to "false sense of safety"

Answer: Not Necessarily


Alternatives to simply increasing ACH:


- Base air exchange rate on contaminant generation
- Review lab practices
- Attain proper air mix ratios
- Reduce overall ACH to save energy and increase ACH as needed via "smart controls"

- Introductions Getting to know one another
- Review of Existing Codes Governing Laboratory Ventilation
 - Challenges to Energy Conservation/Sustainability
- UCI Low-Flow (High Performance) Fume Hood Permanent Variance Application
 - Overview of Studies and Variance Application Process
 - Next Steps Variance Hearing, Purchase and Installation Plan, Expansion of Permanent Variance within UCI and other UC Campuses
- UCI "Smart Lab" Concept
- Discussion

Low Flow (high performance) Fume Hoods

Operate safely at lower face velocities (i.e. 70 FPM rather than 100 FPM)

Increased Hood Depth

UCI Low Flow Fume Hood Study 2008

- Both traditional and low flow fume hoods were subjected to 168 ASHRAE 110 tests
- Low flow hoods performed better than standard hoods at 80 & 100 fpm - fully open sash
 - Tracer gas results were well below the 0.1ppm "as used" ASHRAE criteria
 - Low flow hoods save energy, particularly in constant volume systems
 - Low flow hoods may also be a good solution in buildings with limited HVAC capacity

Flow & Cost Comparison

HVAC System	Flow at 100 fpm	Flow at 80 fpm	Flow at 70 fpm
Type and	nominal face velocity	nominal face velocity	nominal face velocity
Fume Hood	Annual Cost at \$5 per	Annual Cost at \$5 per	Annual Cost at \$5 per
Equipment	CFM	CFM	CFM
Constant Air	900 CFM	720 CFM	630 CFM
Volume	\$4500	\$3600	\$3150
Variable Air Volume (VAV)	Good: 682 CFM/\$3410 Poor: 851 CFM/\$4255	Good: 568 CFM/\$2840 Poor: 686 CFM/\$3430	Good: 511 CFM/\$2555 Poor: 604 CFM/\$3020
VAV with ZPS	Good: 492 CFM/\$2460	Good: 470 CFM/\$2350	Good: 462 CFM/\$2310
	Poor: 558 CFM/\$2790	Poor: 539 CFM/\$2695	Poor: 530 CFM/\$2650
VAV with ASC	361 CFM	343 CFM	335 CFM
	\$1,805	\$1,715	\$1,675
VAV with Perfect Sash Management	343 CFM \$1,715	331 CFM \$1,655	325 CFM \$1,625

Flow & Cost Comparison

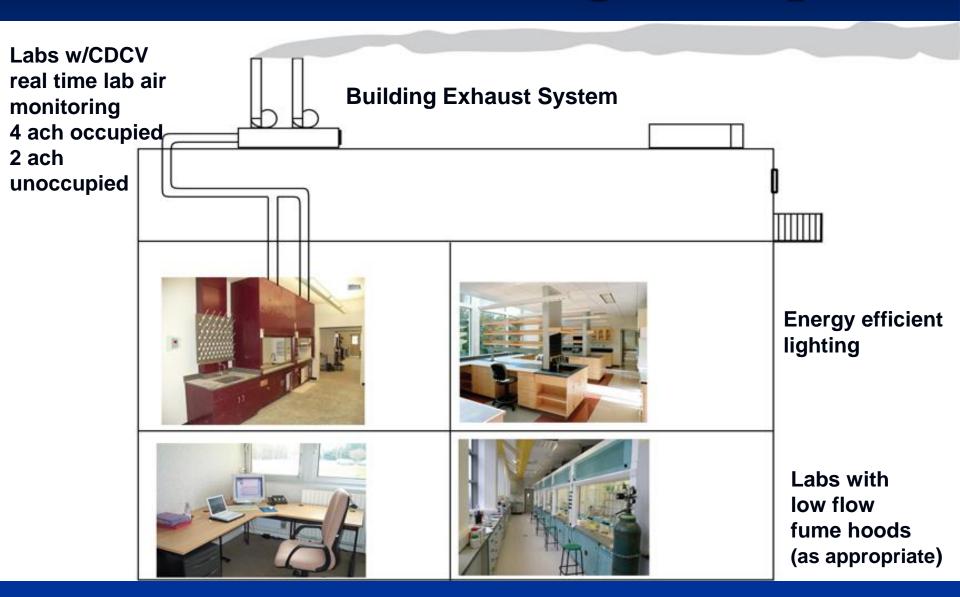
HVAC System	Flow at 100 fpm	Flow at 80 fpm	Flow at 70 fpm
Type and	nominal face velocity	nominal face velocity	nominal face velocity
Fume Hood	Annual Cost at \$5 per	Annual Cost at \$5 per	Annual Cost at \$5 per
Equipment	CFM	CFM	CFM
Constant Air	900 CFM	720 CFM	630 CFM
Volume	\$4500	\$3600	\$3150
Variable Air Volume (VAV)	Good: 682 CFM/\$3410 Poor: 851 CFM/\$4255	Good: 568 CFM/\$2840 Poor: 686 CFM/\$3430	Good: 511 CFM/\$2555 Poor: 604 CFM/\$3020
VAV with ZPS	Good: 492 CFM/\$2460	Good: 470 CFM/\$2350	Good: 462 CFM/\$2310
	Poor: 558 CFM/\$2790	Poor: 539 CFM/\$2695	Poor: 530 CFM/\$2650
VAV with ASC	361 CFM	343 CFM	335 CFM
	\$1,805	\$1,715	\$1,675
VAV with Perfect Sash Management	343 CFM \$1,715	331 CFM \$1,655	325 CFM \$1,625

Study #1 Conclusions Face Velocity & Sash Height

- All hoods performed best at 18" sash height
 All tracer gas results were well under 0.1ppm "as used" ASHRAE criteria
 At 100, 80, and 60 fpm
 All low flow hoods performed better than standard based at 80. & 100 from fall standard based
 - standard hood at 80 & 100 fpm full open sash

Study #2 – Exposure Monitoring

- Low flow fume hoods again passed ASHRAE 110 tests
- ASHRAE 110 Tests Confirmed Findings from Study #1
- All samples were below published Cal-OSHA limits


- Introductions Getting to know one another
- Review of Existing Codes Governing Laboratory Ventilation
 - Challenges to Energy Conservation/Sustainability
- UCI Low-Flow (High Performance) Fume Hood Permanent Variance Application
 - Overview of Studies and Variance Application Process
 - Next Steps Variance Hearing, Purchase and Installation Plan, Expansion of Permanent Variance within UCI and other UC Campuses
- UCI "Smart Lab" Concept
- **Discussion**

Permanent Variance – Next Steps

- Permanent Variance was requested for 3 UCI research buildings
- Must make presentation before the Cal-OSHA Standards Board
- Awaiting hearing date make take up to 1 year
 Future plan: Expand permanent variance to cover all of UCI
- Stretch goal: Extend permanent variance to cover all UC campuses.

- Introductions Getting to know one another
- Review of Existing Codes Governing Laboratory Ventilation
 - Challenges to Energy Conservation/Sustainability
- UCI Low-Flow (High Performance) Fume Hood Permanent Variance Application
 - Overview of Studies and Variance Application Process
 - Next Steps Variance Hearing, Purchase and Installation Plan, Expansion of Permanent Variance within UCI and other UC Campuses
- UCI "Smart Lab" Concept
- Discussion

Smart Lab Building Concept

Smart Lab Parameters

Current Best Practice

Smart Lab Parameters

+ contaminant sensing

Air-handler/filtration airspeeds	400 ft/min. max	350 ft/min. max
Total system (supply + exhaust) pressure-drop	6 in. w.g.	<5 in. w.g. (incl. dirty filter allow.)
Duct noise attenuators	Few	None
Occupied lab air-changes/hr. (ACH)	6 ACH	4 ACH w/contaminant sensing
Night air-change setback (unoccupied)	No setback	2 ACH w/occupancy + contaminant ser + no thermal inputs during setbacks
Low-flow/high-performance fume hoods	No	Yes, where hood density warrants
Fume hood face-velocities	100 FPM	70 FPM (low-flow hoods)
Fume hood face-velocities (unoccupied)	100 FPM	40 FPM (low-flow hoods)
Fume hood auto-closers	None	Where hood density high
Exhaust stack discharge velocity	~3,500 FPM	Reduce or eliminate bypass air, wind responsive controls
Lab illumination power-density	0.9 watt/SF	0.6 watt/SF w/LED task lighting
Fixtures near windows on daylight sensors	No	Yes
Energy Star freezers & refrigerators	No	Yes
Out-perform CA Title 24	20-25%	50%

Bill & Sue Gross Hall A Smart & Sustainable Design

Gross Hall Features

- Centralized Demand Controlled Ventilation real-time indoor air quality monitoring, varies the ventilation rate
- Occupancy Based Controls controls both ventilation system & lighting
- Natural Ventilation operable windows linked with mechanical ventilation
- Smart Lighting Controls daylighting sensors used with perforated blinds
- Energy Star Equipment freezers, refrigerators, ice machines & copiers
- Air Handling System larger air handlers accommodate low pressure-drop filtration
- Building Exhaust right sized exhaust system eliminates bypass air

Exceeding Title 24

Gross Hall Project	Exceeded Title 24 By	Time Dependant Value
As Submitted to Utilities	38%	TDV Office Bldg
Using Code Chiller	50%	TDV 24/7
Using UCI Central Plant with TES	57%	TDV 24/7

2008 California Green Building Standards Code **California Code of Regulations** Title 24, Part 11 California Building Standards Commission **EFFECTIVE AUGUST 1, 2000**

Estimated annual energy savings: • 890,080 kWh electrical with 193 kW demand reduction • 22,464 therms of natural gas

> Estimated annual energy cost savings: • **\$110,980** at \$0.105/kWh and \$0.78/therm

Savings by Design payment of \$397,836 Exceeding Title 24 by 50%

Bid as a LEED New Construction (NC) Silver Design Build contractor proposed to increase the sustainable features to achieve LEED NC Gold certification

- Introductions Getting to know one another
- Review of Existing Codes Governing Laboratory Ventilation
 - Challenges to Energy Conservation/Sustainability
- UCI Low-Flow (High Performance) Fume Hood Permanent Variance Application
 - Overview of Studies and Variance Application Process
 - Next Steps Variance Hearing, Purchase and Installation Plan, Expansion of Permanent Variance within UCI and other UC Campuses
- UCI "Smart Lab" Concept
- Discussion

As A Reminder...

We have your audio muted, so we cannot hear you

If you have a question for the panel, instead of using the "raising your hand" button, use the chat tab (Conversation) and preface your comment with "Question for Panel"

Thank You!

UNIVERSITY of CALIFORNIA - IRVINE