Welcome to the Webinar!

- We hope you are logged in properly, if you are having trouble call 949-824-5828
- We have your audio muted, so we cannot hear you
- We can read your comments under the "chat tab" (conversation)
- If you have a question for the panel, instead of using the "raising your hand" button, use the chat tab and preface your comment with "Question for Panel"
- We will take questions during the Q&A session

Applying a New and Emerging Technology

Lab Centralized Demand Controlled Ventilation (CDCV)

Marc Gomez, EH&S Rebecca Lally, EH&S Chris Abbamonto, Facilities Management Matt Gudorf, Facilities Management Geoffrey Bell, LBNL

UNIVERSITY of CALIFORNIA - IRVINE

University of California, Irvine

Category one research university \$16M annual utilities budget Lab buildings consume 2/3 of campus energy Many energy initiatives to reduce carbon footprint

This Initiative

Does Centralized Demand Controlled Ventilation (CDCV) Allow Us To **Reduce Ventilation Rates & Save Energy** Without Compromising Safety?

Lab Ventilation Rates

- Often set at a "constant rate" 24/7
- Recommended range 4 to 12 air changes per hour
- Usually excessive during low-level process activity or non-occupancy
- Explore possibility of "set back" based on lab pollutant concentration

Components of Centralized Demand Controlled Ventilation (CDCV)

"Creating a Smart Lab"

CDCV & Energy \$avings Monitor Air Contaminants

Reduce air changes per hour (ACH) if no contaminants detected

Increase air changes per hour (ACH) when contaminants detected

CDCV & Energy \$avings Challenge Balance energy savings & safety

Maximize Energy Savings

Without Compromising Safety

CDCV & Energy \$avings Recipe for Success Team Synergy

Safety _____ Management

— Supportive Users/ Researchers

Visionary & Supportive Upper Management

Patience

Facility Managers Is CDCV effective in reducing the contaminant concentration from a spill in a lab?

Spill Locations

Farthest point from the hood

In front of the hood

Benchtop

Spill Test Methodology

500 ml of acetone

Baseline measurement and with CDCV activated

Photoionization detector - 10.6 eV lamp
 MiniRae 2000 instrument
 CDCV

CDCV ventilation activation level: 0.5 ppm

CDCV polling interval time: 14-17 minutes

Distributed, Multi-Point Air-Sampling Network

Air Contaminant Monitoring Results Spill Farthest Point from Hood - Sash Closed

Air Contaminant Monitoring Results Spill Farthest Point from Hood - Sash Closed

Air Contaminant Monitoring Results Spill Farthest Point from Hood - Sash Closed

Spill Farthest Point from the hood - Sash Closed

Spill Results Summary

	Event	Pre-spill ACH	Post- spill ACH	Minutes post- spill ventilation increased	*Peak Conc. (ppm)	Clearance Time (min.)
	Baseline Spill w/o CDCV	6	6	n/a	339	73
	Spill 1 w/CDCV	4	12	5	219	70
	Spill 2 w/CDCV	4	12	17	227	76
Μ	iniRae 2000					

Conclusions

- Effective at sensing acetone levels
- Is responsive
- When activated, lower peak concentration in open areas

Polling time could result in delay in detecting spill

No significant difference in clearance time

Lessons Learned ~ Next Steps

- Set polling interval frequency based on risk assessment
- Current sensor suite does not detect all chemicals
- Sensor selection should be based on risk assessment
- Calibration frequency at 6 months (+/- 15%)
- Sensor failure must "fail safe" to 6 ACH
- Sensor saturation / sensitivity
- Additional spill testing needed

Other Safety Considerations

Energy Management System

- Not meant to be a life safety system
- Provides IAQ info
- Minimize impact of fugitive emissions
- Emergency override exhaust ventilation "red" button
- Provide visual display outside lab
- Notification to EH&S staff of spill
- Instant messaging to facility staff of system problems
 - Preventative maintenance issues

Energy Savings?

- Goal: Reduce ACH rate by reducing CFM delivered to individual laboratory rooms by way of CDCV
- Step 1 Select Building/Labs
 - ACH Reduction Constraints (FH, Freezers, Solar Heat)
 - VAV Controls and EMS
- Step 2 Retro-Commissioning
 - Bad Cards
 - Bad Poppets
 - Poor Thermostat Location
 - Economizer (temp. reset 65 deg F)
 - Low Duct Static Pressure
 - CFM Adjustment for Actual Room Size

Energy Savings?

- Step 3 Installation
 - Hard wired approach vs. EMS control
 - Valve adjustment (clamps)
- Step 4 Trial and Error
 - Fail Safe Mode?? (no notification)
 - ACH verification (Room CF)
 - Spill Testing
 - CFM verification with EMS (same source!)

Lessons Learned

Step 5 – Evaluation of the System

There is an inherent gain of useful information such as lab temperature, sensed data, and potential commissioning data (LEED).

Areas for improvement:

- Front End with ACH would be helpful
- Direct user notification of failure
- Considerations: User training and service contract for sensor change-out in original contract.

Croul Hall CFM Rate Change

System Payback?

- System Installation Cost approx.
 \$125,000 not including deferred maintenance and retro-commissioning.
- Observed CFM reduction in installed labs during a two week snapshot comparison ~6,100
- Anticipated payback: 2-5 years
- Still fine tuning the system

- Croul Hall CDCV
 - 4/2 ACH setback with occupancy sensing
 - Emergency exhaust red button
- Croul Hall Occupancy Based
 - 4/2 ACH setback with occupancy sensing
 - Visual and audible signal to occupant of AC's
 - Emergency exhaust red button
 - EH&S lab oversight (additional)

 Additional Testing (3rd Party) of System Components
 MBCx and Energy Savings Verification
 LEED-EB Certification
 Maintenance Costs vs Energy Costs – further analysis

 New Construction UC Irvine Gross Hall -CDCV
 4/2 ACH occupancy sensing
 Emergency exhaust red button
 CDCV - visible and audible signal to occupant

Your inputOther studies

CDCV - A Retrofit Opportunity

Classification of Hazardous Labs Scrutinize air change rates Consider Control Banding Baseline Lab Facility Operation Perform Lab Airflow Survey Test Lab VAV system periodically Labs21 Partnership Program Benefits are numerous...

Question

Does Centralized Demand Controlled Ventilation (CDCV) Allow Us To **Reduce Ventilation Rates & Save Energy** Without Compromising Safety?

Answer

CDCV has merits. Further study is needed to gain a better understanding of the system. There is energy savings, further quantification is also needed.

Webinar Q&A

Use chat box to send questions to "all participants", preface your question with "Question to Panel"

If you cannot write in your question, "raise hand" and we will un-mute you to talk

If you want to view the panel:

At top right corner – click on panel, then click on video

Thank You!

